Nucleophilic Cleavage of the Germanium–Oxygen Bond: Acid-catalysed Hydrolysis of Phenoxygermanes

By John R. Chipperfield * and Geoffrey E. Gould, Department of Chemistry, The University, Hull HU6 7RX

The acid-catalysed hydrolysis of phenoxygermanes in aqueous dioxan proceeds to a position of equilibrium, and kinetic data show that the reaction is at least second-order with respect to water. Tributylphenoxygermane reacts 5 × 10⁵ faster than the analogous phenoxysilane. This result is compared with the relative reactivities of other organosilicon and organogermanium compounds.

THE relationship between the rates of nucleophilic substitution of analogous compounds of silicon and germanium depends upon the nature of the group which is replaced. Alkali-catalysed hydrolytic cleavage of M-hydrogen and M-carbon bonds (M = Si or Ge) occurs more quickly for silicon compounds, whereas hydrolysis of M-acetate and M-halogen bonds is faster for germanium compounds.¹ As there are no reports of the relative rates of acid-catalysed nucleophilic cleavage of bonds in analogous compounds of silicon and germanium, we have measured the rates of acid-catalysed hydrolysis of compounds of the type $R_3GeOC_6H_4X$ (R = [CH₂]₅CH, Bu, or Ph; X = H or p-Me) for comparison with those measured for silicon compounds.²

Solvolytic reactions of the compounds R_3MX (M = Ge or Sn; X = halide, OPh, or OAc) differ from those of the analogous silicon compounds in that they proceed to a position of equilibrium.[†] Phenoxygermanes react much faster than the analogous silicon compounds. As reactions are fast, and proceed to a position of equilibrium, the rate coefficients found for phenoxygermanes are less accurate than those for phenoxysilanes,² but they give a reasonable guide to the behaviour of phenoxygermanes.

By optical density measurements on suitable solutions we confirmed that the compounds R_3 GeOPh (R = Bu, Ph, or [CH₂]₅CH) are hydrolysed incompletely. For Bu₃GeOPh g.l.c. confirmed Bu₃GeOH and PhOH as the hydrolysis products, and for Ph₃GeOPh t.l.c. confirmed Ph_3GeOH and PhOH as the products [equation (1)].

$$R_{3}GeOPh + H_{2}O \xrightarrow[k_{-2}]{k_{1}} R_{3}GeOH + PhOH \quad (1)$$

† Failure to observe this fact invalidates some studies in this field.³⁻⁵ For example the position of equilibrium corresponds to only 50% reaction for Bu₃GeOPh in 5% aqueous dioxan containing 2 \times 10⁻³M-HClO₄.

¹ R. H. Prince, M.T.P. International Reviews of Science: Inorganic Chemistry Series One, ed. M. L. Tobe, Butterworths, London, 1972, vol. 9, p. 353.

The acid catalytic coefficients, $k_{\rm a}$, for the hydrolysis of R₃GeOPh were obtained by calculation of the apparent first-order rate coefficient, k_1' , from optical density data (see Experimental section): division by [HClO₄] gives $k_{\rm a}$. By analogy with Bu₃SiOPh, the reaction probably proceeds by fast formation of a protonated phenoxide [equation (2)], which is then hydrolysed by reaction

$$H^+ + R_3 GeOPh \underset{fast}{\overset{K_{eq}}{\longleftarrow}} R_3 GeO(Ph) H^+$$
 (2)

with n water molecules. In the hydrolysis of Bu₃SiOPh, water molecules both act as nucleophiles and also remove a proton from the transition state. The hydrolysis of phenoxygermanes is reversible and the basicity of hydroxides increases in the order $R_3SiOH < R_3GeOH <$ R_3 SnOH.⁶ It is likely that R_3 GeOH₂⁺ is formed in the rate-limiting step [equation (3)] and then quickly loses

$$n\mathrm{H}_{2}\mathrm{O} + \mathrm{R}_{3}\mathrm{GeO}(\mathrm{Ph})\mathrm{H}^{+} \xrightarrow[k_{-2}]{k_{-2}} \mathrm{R}_{3}\mathrm{GeOH}^{+}_{2} + \mathrm{PhOH} + (n-1)\mathrm{H}_{2}\mathrm{O} \quad (3)$$

a proton [equation (4)]. The concentration of $R_3GeOH_2^+$

$$R_{3}GeOH_{2}^{+} \stackrel{K_{p}}{\underset{fast}{\longrightarrow}} R_{3}GeOH + H^{+}$$
 (4)

in the products will be low, as K_p is large, R_3 GeOH being a very weak base. The observed value of k_a is given by equation (5).

$$k_{\rm a} = k_2 K_{\rm eq} [\rm H_2O]^n \tag{5}$$

In 1% aqueous dioxan containing 2.5×10^{-5} M-HClO₄

J. R. Chipperfield and G. E. Gould, preceding paper. O. H. Johnson and E. A. Schmall, J. Amer. Chem. Soc., 1958, 3 80, 2931.

- ⁴ M. G. Voronkov and L. A. Zhagata, Zhur. obshchei Khim.,
- ¹ M. G. Volonkov and D. L. Dem. (U.S.S.R.), 1971, **41**, 1784.
 ⁵ S. C. Chan and F. T. Wong, Z. anorg. Chem., 1971, **384**, 89.
 ⁶ R. West, R. H. Baney, and D. L. Powell, J. Amer. Chem. Soc., 1960, 82, 6269.

at 30°, $k_{\rm a}$ for the hydrolysis of Bu₃GeOPh is 1.05×10^6 1 mol⁻¹ min⁻¹. The k_a value for Bu₃SiOPh under analogous conditions is $2.87 \text{ l} \text{ mol}^{-1} \text{ min}^{-1}$. The relative reactivity of Bu₃GeOPh in comparison with Bu₃SiOPh is thus ca. 5×10^5 . This is much greater than the value of 2×10^3 reported by Prince and Timms⁷ for the hydrolysis of $([CH_2]_5CH)_3MOAc$ (M = Si or Ge). Although Prince and Timms relied upon an extrapolation to give relative reactivity, their figure is probably correct within a power of 10. The larger relative rate found for acid-catalysed hydrolysis arises from the change of K_{eq} as well as of k_2 when Si is replaced by Ge. The basicities of the compounds Ph₃MOPh (M = Si, Ge, or Sn) are in the order Ph₃SiOPh < Ph₃GeOPh < Ph₃GeOPh < Ph₃SnOPh,⁸ and $K_{\rm eq}$ increases in the order Si < Ge < Sn. If k_2 increases by 2×10^3 for germanium compounds (value of Prince and Timms), K_{eq} would need to increase by 2.5×10^2 (2.4 pK_a units) to give the ca. 5×10^5 increase in reactivity observed, which seems reasonable.

As Bu₃GeOPh and Ph₃GeOPh are both hydrolysed very quickly (a stopped-flow spectrophotometer is needed to measure kinetics) we used the less reactive $([CH_2]_5CH)_3GeOPh$ to study the effect of water concentration on k_a . Table 1 shows that k_a varies with water Rate of reverse reaction

$$= k_{-2}[\text{PhOH}][\text{R}_{3}\text{GeOH}_{2}^{+}][\text{H}_{2}\text{O}]^{n-1} \qquad (8)$$

$$= k_{-2}[\text{PhOH}]h_0 c_8 [\text{H}_2 \text{O}]^{n-1} / K_p$$
(9)

$$= k_{-2}'[\text{PhOH}][\text{R}_{3}\text{GeOH}]$$
(10)

equation (11). A graph of $\log k_{2'} + H_0$ against $\log [H_2O]$

$$k_{-2}' = k_{-2} h_0 [H_2 O]^{n-1} / K_p$$
 (11)

should be linear with slope n - 1. The Figure shows that a good straight line is obtained with $n - 1 = 2 \cdot 3$.

If the principal product were $R_3GeOH_2^+$ rather than R_3GeOH the rate of the reverse reaction would be given by equation (12), where $k_{-2}' = k[H_2O]^{n-1}$, and a plot of

Rate of reverse reaction =

$$k[R_3GeOH_2^+][PhOH][H_2O]^{n-1}$$
 (12)

 $\log k_{\text{-2}}'$ against $\log \,[\text{H}_2\text{O}]$ should be linear and not curved as found.

It appears that there are more water molecules participating in the reverse than in the forward reaction. This anomaly probably results from the effects of change of solvent polarity upon k_2 and k_{-2} . Increase in solvent polarity will tend to decrease k_2

TABLE 1

Hydrolysis of $([CH_2]_5CH)_3$ GeOPh catalysed by HClO₄ in aqueous dioxan at 30.0°: variation of k_a , β , and k_{-2}' with H₂O concentration

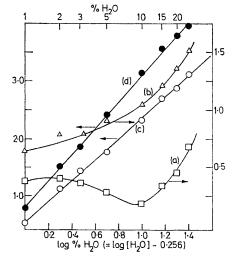
$[H_2O]/\% v/v$	1	2	3	5	10	15	20	25
$10^{-2}k_{\rm a}/1 \text{ mol}^{-1} \text{ s}^{-1}$	$2 \cdot 4$	2.5	$2 \cdot 3$	1.9	1.5	$2 \cdot 2$	$2 \cdot 8$	4 ·8
3	0.73	0.72	0.72	0.61	0.56	0.55	0.53	0.53
$k_{-2}'/l \text{ mol}^{-1} \text{ s}^{-1}$	$4 \cdot 4$	$6 \cdot 1$	$6 \cdot 1$	$8 \cdot 2$	9.9	16.3	23.0	32.8
$[\tilde{\mathrm{HClO}}_4 = 2.5 imes 10^{-5}\mathrm{M}]$								

concentration in a similar way to that found for Bu₃SiOPh. It was not possible to measure k_a at higher water concentrations, as $([CH_2]_5CH)_3$ GeOPh is not very soluble. As shown previously,² a plot of log $k_a + H_0$ (k_a values using 2.5×10^{-5} M-HClO₄; H_0 for 0.1M-HClO₄ in the appropriate solvent) against log $[H_2O]$ should be linear with slope n. Over the range 1-25% aqueous dioxan n = 1.8 (Figure), similar to the value found for Bu₃SiOPh.

Observed rate coefficients for the reverse reaction, k_{-2} , can be calculated from the experimental data, and values are shown in Table 1. The value of K_p is given by equation (6), where S is R₃GeOH. If acidity

$$K_{\rm p} = a_{\rm H^+} c_{\rm S} f_{\rm S} / c_{\rm SH^+} f_{\rm SH^+} \tag{6}$$

functions, h_0 , are measured using substituted anilines as indicators and $f_{\text{inH}+}/f_{\text{in}} = f_{\text{SH}+}/f_{\text{SH}}$, K_p can be written as in equation (7). The rate of the reverse reaction


$$K_{\rm p} = h_0 c_{\rm S} / c_{\rm SH^+} \tag{7}$$

is given by equations (8)—(10), leading to

⁷ R. H. Prince and R. E. Timms, *Inorg. Chim. Acta*, 1967, **1**, 129.

129.
 ⁸ N. A. Matwiyoff and R. S. Drago, J. Organometallic Chem., 1965, 3, 393.

and k_{-2} as both refer to (ion + neutral molecule) reactions. As the fraction of reaction, β (Table 1),

Acid-catalysed hydrolysis of ([CH₂]₅CH)₃GeOPh in aqueous dioxan at 30.0°; (a) $\log k_{\rm a} - 2$; (b) $\log k_{-2}'$; (c) $\log k_{\rm a} + H_0 - 2$; (d) $\log k_{-2}' + H_0$

decreases with rise in water concentration (this is the opposite to the prediction from the law of mass action),

 k_2 is lowered more than k_{-2} by increase in the solvent polarity. As shown before ² the slopes of plots of $\log k_{\rm a} + H_0$ against $\log [H_2O]$ give the minimum number of molecules of water involved. More water molecules may participate if increase in solvent polarity is considered to decrease k_2 . For example to give a slope of 3 for the plot of log $k_a + H_0$ against log $[H_2O] k_a^{25\%}/k_a^{5\%}$ should be 16 rather than 2.5 as measured. Retardation of rate by a factor of 6.5 is a reasonable figure for a change in dielectric constant from 3.8 (5% aqueous dioxan) to 14.0 (25% aqueous dioxan).

The relative rate of acid-catalysed hydrolysis, k_{a}^{rel} , of p-MeC₆H₄OGeBu₃ and Bu₃GeOPh is 0.9. For the analogous phenoxysilanes $k_a^{rel} = 1.4$. Electron-releasing groups will lower k_2 and increase K_{eq} . As k_a is proportional to $k_2 K_{eq}$, either the two effects almost cancel each other for phenoxygermanes, or k_2 and K_{eq} must be insensitive to electrical effects. Experiments with the compounds R_3 GeOPh (R = Bu or Ph) show that $k_{\rm a}$ is sensitive to the nature of R. Table 2 shows

TABLE 2

Relative rates of hydrolysis of derivatives of silicon and germanium, R₃MX, in aqueous dioxan

		$[H_2O]/$			$k_{a}^{Bu} MX /$
\mathbf{M}	x	% v/v	t/°C	Catalyst	$k_a^{Ph_3MX}$
Si	OPh	5	30.0	HClO ₄	3.8 a
Si	OAc	5	$25 \cdot 0$	None	5.9 0
Ge	OPh	1	30.0	HClO ₄	11.3
		^a Ref. 2.	^b Ref. 6.		

the relative rates of acid-catalysed hydrolysis of Bu_3MOPh in comparison with Ph_3MOPh (M = Si or Ge). Also included is the relative rate of hydrolysis of Bu₃SiOAc in comparison with Ph₃SiOAc. The largest relative rate is found for the germane hydrolysis. It is not easy to explain why the relative rate of hydrolysis of tributyl- and triphenyl-phenoxygermane should be greater than the relative rates of hydrolysis of the analogous acetoxy- and phenoxy-silanes. Changes in the amount of π -bonding present and the altered distribution in phenoxygermanes could alter both K_{eq} and k_2 . Detailed discussion of these effects is not profitable without further data.

EXPERIMENTAL

Tributylphenoxygermane was prepared by stirring tributylgermanol and phenol together at 180° for 4 days. Distillation at 0.2 mmHg yielded tributylphenoxygermane, which was purified by further vacuum distillation. Tributyl-p-methylphenoxygermane was prepared in a similar manner. Phenoxytriphenylgermane was made in a similar manner to triphenoxysilane.² Tricyclohexylphenoxygermane was prepared by boiling tricyclohexylgermanol {produced from ([CH₂]₅CH)₃GeCl by hydrolysis with KOH in ethanol} with phenol in benzene. Molecular sieves (grade 4A) were added to absorb the water formed.

The purity and identity of all phenoxygermanes was assessed by i.r., u.v., n.m.r., and mass spectroscopy. There were no detectable impurities except sometimes a little (<1%) of the parent phenol. G.l.c. analysis of the liquid tributyl derivatives showed that compounds were >99%pure.

Rate Measurements.—Rate coefficients, k_{a} , for the acidcatalysed hydrolysis of tricyclohexylphenoxygermane were measured by the spectrophotometric method previously described.² Acid-catalysed hydrolysis of tributyl- and triphenyl-phenoxygermanes was rapid, and rate coefficients were obtained by using a stopped-flow spectrophotometer.9

Whereas hydrolysis of phenoxysilanes proceeds to completion, phenoxygermanes are only partially hydrolysed and the appropriate rate equation ¹⁰ was used to calculate $k_{\rm a}$ values from spectrophotometric data. These calculations are laborious, and a suitable computer program was written and used. Approximate k_a values can be obtained from spectrophotometric data if the extinction coefficients of reactants and products are known. Consider reaction (13).

$$A \underset{k_{-2}'}{\overset{k_{1}'}{\longrightarrow}} B + C$$
(13)

If initially [A] = a, at time t [B] = [C] = x, and finally $[B] = [C] = x_e$, the integrated rate equation is equation (14).¹⁰ If the overall fraction of reaction,

$$\frac{\ln \left\{ [ax_{\rm e} + x(a - x_{\rm e})]/a(x_{\rm e} - x) \right\}}{(2a - x_{\rm e})/x_{\rm e}} = k'_{1}t \qquad (14)$$

 $x_{\rm e}/a = \beta$, the observed half-life, $t_{\rm h}^{\rm obs}$ (when $x = x_{\rm e}/2$), is given by equation (15). The value of t_1^{obs} is easily found

$$k_{1}' t_{2}^{\text{obs}} = \frac{\ln (3 - \beta)}{(2 - \beta)/\beta}$$
(15)

from the observations of optical density as it is the time at which half the change has taken place. The value of β can be calculated from the initial and final optical densities, OD_0 and OD_{∞} , and the ratio of extinction coefficients of reactant and product, ε_r and ε_p , by equation (16). Molar

$$\beta = (OD_0 - OD_{\infty})[1 - (\varepsilon_p/\varepsilon_r)]/OD_0$$
(16)

extinction coefficients are given in Table 3. Values of

TABLE 3

Extinction coefficients of phenoxygermanes and of phenol at the same wavelengths

Compound	λ/nm	$10^{-2} \varepsilon_{\mathrm{com} \mathrm{ound}} / 1 \mathrm{mol}^{-1} \mathrm{cm}^{-1}$	$10^{-2} \varepsilon_{\mathrm{phenol}} / 1 \mathrm{mol^{-1}cm^{-1}}$
([CH ₂] ₅ CH) ₃ GeOPh Bu ₂ GeOPh	$285.5 \\ 285.5$	6·66 5·78	$1.28 \\ 1.28$
p-MeC ₆ H ₄ OGeBu ₃ Ph ₃ GeOPh	$\frac{293\cdot5}{280}$	$10.0 \\ 11.5$	5.41 14.7

 k_{2} can be calculated from (17). Values of k_{a} calculated

$$k_{2}' = k_1' (1 - \beta) / a \beta^2 \tag{17}$$

by the two methods agreed well. Only the ratio ϵ_p/ϵ_r is needed to calculate k_{a} , whereas absolute values are necessary to calculate k_{-2}' as equation (17) includes $a = OD_0/\varepsilon_r l$, where l = path length).

We are grateful to the Germanium Research Committee for a gift of GeCl₄.

[3/332 Received, 13th February, 1974]

<sup>J. R. Chipperfield, Chem. and Ind., 1970, 530.
A. A. Frost and R. G. Pearson, 'Kinetics and Mechanism,'</sup> Wiley, New York, 2nd edn., 1961, p. 186.